Vallis First School Calculation Policy

September 2017

Explore part, part whole relationship

Using the ten frame to support addition of single digits - counting all/combining two groups

$\bullet 00 \bullet 0$	$6+4=10$
$000 \cdot 0$	$4+4=8$
$\bullet \bullet \bullet \bullet \bullet$	$5+2=7$
00	$2+4=6$
0	

Solving problems using concrete and pictorial images

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Abstract

\begin{tabular}{|c|c|c|}
\hline Regrouping to make 10; using ten frames and counters/cubes or using Numicon.
$$
6+5
$$
\square \& Children to draw the ten frame and counters/cubes. \& Children to develop an understanding of equality e.g.
$$
\begin{aligned}
& 6+\square=11 \\
& 6+5=5+\square \\
& 6+5=\square+4
\end{aligned}
$$

\hline TO + O using base 10 . Continue to develop understanding of partitioning and place value.
$$
41+8
$$ \& Children to represent the base 10 e.g. lines for tens and dot/crosses for ones. \& $$
41+8
$$

$$
\begin{aligned}
& 1+8=9 \\
& 40+9=49
\end{aligned}
$$

$$
\begin{array}{r}
41 \\
+\begin{array}{r}
8 \\
\hline 49
\end{array} \\
\hline
\end{array}
$$

\hline TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$ \& Chidren to represent the base 10 in a place value chart. \& Looking for ways to make 10.

\hline
\end{tabular}

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Use of place value counters to add $\mathrm{HTO}+\mathrm{TO}, \mathrm{HTO}+$ HTO etc. When there are 10 ones in the is column-we exchange for 1 ten, when there are 10 tens in the 10 s column-we exchange for 1 hundred.	Chidren to represent the counters ina place value chart, circling when they make an exchange.	243
	100 s 10 s ls	
100s 10s is	$\begin{array}{ll}00 & 0000\end{array}$	$+368$
00 0000 000 0		611
$000 . \begin{aligned} & 0000 \\ & 0\end{aligned} \begin{aligned} & 00 \\ & 00 \\ & 00 \\ & 0\end{aligned}$		11
$6 \quad 1 \quad 1$	61	

Using Thousands, Hundreds, Tens and Ones

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Fluency variation, different ways to ask children to solve $21+34$:

Using the ten frame to support subtraction by taking away.

Peter has 5 pencils and 3 erasers. How many more pencils than erasers does he have? Solve problems using concrete and pictorial images

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a who (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	$\begin{aligned} & 4.3- \\ & \square]^{4-3} \end{aligned}$
	$\otimes \otimes \otimes O$	$\square \cdot$,
	$x\|x\| x \mid$	$\overbrace{0}^{4}$
Comin bex		
${ }_{6-2=4}$	Ш10	
$\cdots \cdots$	$112 / 3 / 4 \text { 合 } 56778110$	$\operatorname{limm}_{012345678910}$

Concrete	Pictorial	Abstract
		Find the difference between $8-5$, the difference is \square
-10n	00080000	comed
1	$\square_{5} 8^{8}$	
	ज70	
	7 7	${ }_{4}{ }_{1}$
	\square	

Key language: take away, less than, the difference, subtract, minus, fewer, decrease, 7 take away 3 , the difference is 4

Concrete	Pictorial	Abstract
	, mambeme	amer
		48
-	$4{ }_{4}$	$\frac{7}{41}$
min	,	
\cdots - - - 1-		-4.414
	, ${ }^{5}$	- 26
		mo
$0^{\text {a m }}$		234
mom		-88

To include 4 digit numbers. Key language: take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is 4'

Fluency variation, different ways to ask children to solve 391-186:

		Raj spent £391, Timmy spent £186. How much more did Raj spend? Calculate the difference between 391 and 186.	What $=391-186$-186What 186 less than 391?	Missing digit calculations$\begin{gathered} 39 \square \\ -\square \square 6 \end{gathered}$
				$\square 05$
186	?			

Children will experience equal groups of objects.

They will work on practical problems solving activities.
There are 6 pairs of socks. How many socks are there altogether?

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.


```
Key language: double, times, multiplied by, the product of, groups of, lots of, 'is equal to', 'is the same as'.
```

Concrete		Pictorial	Abstract
Formal column method with place value counters or base 10 (at the first stage- no exchanging) 3×23 Make 23, 3 times. See how many ones, then how many tens	Childre way Tens 1 1 1 6	present the counters in a pictorial Ones	Children to record what it is they are doing to show understanding $\begin{array}{cc} 3 \times 23 & 3 \times 20=60 \\ & 3 \times 3=9 \\ 20 & 3 \end{array}$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \end{array}$
Formal column method with place value counters (children need this stage, initially, to understand how the column method works)	Children pictoriall	resent the counters/base 10 , the image below.	$\begin{aligned} & 6 \times 23 \\ & 6 \times 3=18 \\ & 6 \times 20=120 \\ & 120+18=138 \end{aligned}$

Fluency variation, different ways to ask children to solve 6×23 :

	\| Ma had to swim 23 lengths, 6 times a week. How manylenghth did she swim in one week?	Find the product of 6 and 23	What is the calculation? What is the product?		
23 23 23 23 23 23		$6 \times 23=$	100s	10s	Is
?	With the counters, prove that 6×23 $=138$	$\left\lvert\, \begin{array}{r} \text { Lin }=6 \times 23 \\ 6 \\ \times 23 \\ \times \underline{23} \\ \hline \end{array}\right.$		100 00 08 80 08 08	$\begin{array}{r}15 \\ \hline 000 \\ 0000 \\ 000 \\ 000 \\ 000 \\ 000 \\ \hline\end{array}$

Halving Mat

Key language: share, group, divide, divided by, half.

Fluency variation, different ways to ask children to solve 615 $\div 5$:

Using the part whole model below, how can you divide 615 by 5 without using	I have £615 and share it equally between 5 bank accounts. How much will be in each account? 615 pupils need to be put into 5 groups. How many will be in each group?	$\begin{aligned} & 5 \longdiv { 6 1 5 } \\ & 615+5= \\ & 5=615+5 \end{aligned}$	What is the calculation? What is the answer?		
			100s	10s	Is
			${ }^{+0} 5$	$\begin{aligned} & 10000 \\ & 00000 \end{aligned}$	$\begin{aligned} & 00000 \\ & 00000 \\ & 00000 \end{aligned}$

